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ABSTRACT: Practical challenges in simulating quantum systems on classical
computers have been widely recognized in the quantum physics and quantum
chemistry communities over the past century. Although many approximation methods
have been introduced, the complexity of quantum mechanics remains hard to appease.
The advent of quantum computation brings new pathways to navigate this challenging
and complex landscape. By manipulating quantum states of matter and taking
advantage of their unique features such as superposition and entanglement, quantum
computers promise to efficiently deliver accurate results for many important problems
in quantum chemistry, such as the electronic structure of molecules. In the past two
decades, significant advances have been made in developing algorithms and physical hardware for quantum computing,
heralding a revolution in simulation of quantum systems. This Review provides an overview of the algorithms and results that
are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum
computing and quantum computing researchers who would like to explore applications in quantum chemistry.
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One of the most promising applications of quantum computing is solving classically intractable
chemistry problems. As a result, quantum computational chemistry is rapidly emerging as an inter-
disciplinary field requiring knowledge of both quantum information and computational chemistry.
This work provides a comprehensive introduction to both fields, bridging the current knowledge gap.
We review the key developments in this area, with a focus on near-term quantum computation. We
illustrate the methods discussed by explicitly demonstrating how to map chemical problems onto a
quantum computer, and solve them. We conclude with an outlook for this nascent field.
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Getting rid of overheads of QPEA

• Constant ancilla overhead of energy register
• Coherence through Hamiltonian evolution and QFT
• Many controlled operations

• Iterative QPEA partly solves this problem

10.1038/nchem.483
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It’s trying to build
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While all you can do is

Do something in the current available quantum volume
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Variational Quantum Eigensolver
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Rayleigh-Ritz Variational Principle

Start point

• gate based quantum
computer
• Quantum chemical first

principles hamiltonian in
second quantization

H =
∑
pq

hpqa
†
paq

+
1

2

∑
pqrs

hpqrsa
†
pa
†
qasar

• Time independent
Schrödinger equation

H |Ψ0〉 = E0 |Ψ0〉

Energy

E
(
~θ
)

=

〈
ψ
(
~θ
)∣∣∣H ∣∣∣ψ (~θ)〉〈

ψ
(
~θ
)∣∣∣ ψ (~θ)〉

E
(
~θ
)
≥ E0

• Equality holds when the
ground state is reached

Qchem on NISQ Devices – MD - UofT Intro 8/29



Comparison with QPEA

QPEA

/ Many ancilla qubits
/ Long circuits

,/ Measurements to build
statistics with same circuit

,/ Guaranteed ground state
, No optimization

VQE

, No ancilla qubits
, Short circuits

,/ Lots of measurements with
different circuit

,/ As good as the ansatz
/ Iterative noisy optimization

Short circuits make the difference
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Three steps

1 State preparation

1 Reference state
2 Ansatz

2 Measurement
3 Optimization
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Initial state

Classical

Starting from empty vacuum

ai |−〉 = 0,∀i

Add particles by acting with a†i
For instance Hartree-Fock state

|φ0〉 =
M∏
i=0

a†i |−〉

= | 0...0︸︷︷︸
N−M

1...1︸︷︷︸
M

〉

for the M lowest energy orbitals

Quantum Computer

Initialized to all 0’s

|ψ0〉 = |0〉⊗N

Particles can be added by
working with Q†i :

Q†i = |1〉 〈0|i

=

[
0 1
0 0

]
i

=
1

2
(Xi − iYi )

Qchem on NISQ Devices – MD - UofT State preparation 11/29



Mappings

How do we map states on electrons to a state of qubits?

• Equal number of qubits as spin-orbitals
|f0 . . . fN−1〉 → |q0 . . . qN−1〉 with fi , qi ∈ {0, 1}

But:
• Fermions are indistinguishable and anti-symmetric under

exchange
a†i a
†
j |ψ〉 = −a†j a

†
i |ψ〉

• Qubits are distinguishable and have orthogonal Hilbert spaces
1
2 (Xi − iYi )

1
2 (Xj − iYj) |ψq〉 = 1

2 (Xj − iYj)
1
2 (Xi − iYi ) |ψq〉

⇒ different statistics, we need a one to one mapping between
states in fermionic Fock space and qubit Hilbert space

Qchem on NISQ Devices – MD - UofT State preparation 12/29



Two common mappings

Jordan-Wigner (JW)

• uses occupation encoding

qi = fi ,∀p

• sign gets counted by strings of
Z ’s from qubit 0 or N − 1

a†i = Q†i ⊗ Zi−1 ⊗ · · · ⊗ Z0︸ ︷︷ ︸
i times

• density operators stay local

ni = a†i ai

=
1

2
(1i − Zi )

• O (N)

Bravyi-Kitaev (BK)

• Recursive procedure

qi =
i∑

j=0

β
(N)
ij fj (mod2)

β(1) =
[

1
]

β(2) =

[
β(1) 0

1 β(1)

]
β(2

q+1) =

[
β(2

q) 0
A β(2

q)

]
• densities no longer local
• O (logN)
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Unitary

There is always a unitary that describes the exact ground-state
wave function
∃U : U |φ0〉 = |Ψ0〉
• a general unitary has 2N − 1 real parameters
• implementing this in a circuit is costly
• finding the parameters would be hard

⇒ Not realistic

We will have to approximate the general unitary
• Physically motivated ansatz
• Hardware heuristic ansatz

Qchem on NISQ Devices – MD - UofT State preparation 14/29



Physically motivated ansatz: Coupled Cluster

|Ψ〉 = exp (T ) |φ0〉

= |φ0〉+ T1 |φ0〉+

(
T1T1

2
+ T2

)
|φ0〉+ . . .

T =
M∑
p=1

Tp

Tp =
1

(p!)2

∑
a0...ap ,i0...ip

t
a0...ap
i0...ip

a†ap . . . a
†
a0ai0 . . . aip

• Only excitations from occupied to virtual
T1 |φ0〉 =

∑
a,i t

a
i | 0 . . . 0︸ ︷︷ ︸

N−M−a−1

1 0 . . . 0︸ ︷︷ ︸
a−1

1 . . . 1︸ ︷︷ ︸
M−i−1

0 1 . . . 1︸ ︷︷ ︸
i−1

〉

• Number of parameters rises exponentially with p
⇒ Truncation to only singles and doubles
• Not a unitary operator
⇒ Needs adjustment for a quantum computer

Qchem on NISQ Devices – MD - UofT State preparation 15/29



Physically motivated ansatz: Unitary Coupled Cluster

|Ψ〉 = exp
(
T − T †

)
|φ0〉

=
(

1− T †1T1 + . . .
)
|φ0〉+

(
T1 − T †1T2 + . . .

)
|φ0〉

+

(
T1T1

2
+ T2 + . . .

)
|φ0〉+ . . .

• Generally impossible on a classical computer
• Transform with JW or BK exp

(
T − T †

)
= exp (

∑
i θiPi )

• Exponential of sum of non-commuting terms
⇒ No straighforward protocol

Qchem on NISQ Devices – MD - UofT State preparation 16/29



Physically motivated ansatz: Trotter formula

• Zassenhaus formula

exp (A + B) = exp (A) exp (B) exp (−[A,B]) . . .

• Trotter-Suzuki formula

exp

(∑
i

θiPi

)
≈

(∏
i

exp

(
θi
r
Pi

))r

≈ exp

(
θ0
r
P0

)
. . . exp

(
θL−1
r

PL−1

)
×

exp

(
θ0
r
P0

)
. . . exp

(
θL−1
r

PL−1

)
× . . .︸ ︷︷ ︸

r times

Qchem on NISQ Devices – MD - UofT State preparation 17/29



Physically motivated ansatz: How many Trotter steps do you need?

• most of the time r = 1 is sufficient

10.1088/2058-9565/aad3e4
• optimization compensates for different ansatz

~θr=1 6= ~θexact

Er=1 ≈ Eexact
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Physically motivated ansatz: How do you implement an exponential?

e.g. exp (−iθZ1Z0)

• •
Rz (θ)

|00〉 |00〉 exp (−iθ) |00〉 exp (−iθ) |00〉
|01〉 |11〉 exp (iθ) |11〉 exp (iθ) |01〉
|10〉 |10〉 exp (iθ) |10〉 exp (iθ) |10〉
|11〉 |01〉 exp (−iθ) |01〉 exp (−iθ) |11〉

e.g. exp (−iθY2X1Z0)

• •
H • • H

Rx

(
−π

2

)
Rz (θ) Rx

(
π
2

)
Qchem on NISQ Devices – MD - UofT State preparation 19/29



State preparation: Hardware Heuristic Ansatz

• D layers of rotations and entangling gates

∣∣∣Ψ(~θ)〉 = U(D−1)
(
~θ(D−1)

)
. . .U(0)

(
~θ(0)
)
|φ〉

• as D increases, approximates full unitary
• either machine efficient or middle ground

10.1103/PhysRevA.98.022322
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Measurement: How do you measure a hamiltonian?

• transform with JW or BK H =
∑

p hpPp

• hamiltonian averaging 〈H〉 =
∑

p hp 〈P〉
⇒ reduced to measure single operator at a time

• Transform into eigenbasis with 1, H, or Rx

(
−π

2

)
〈H〉 =

∑
p

hp [P (Pp = 0)− P (Pp = 1)]

=
∑
p

hp
#P0 −#Pp = 1

#Pp = 0 + #Pp = 1

• not all measurements can be made simultaneously

Qchem on NISQ Devices – MD - UofT Measurement 21/29



Measurement: An example

H = Z0 + 2X1Y2 + 3Z0X1Y2 + X0X1X2

1010101010

|ψ〉 H 1100110011

Rx

(
−π

2

)
1110001110

〈H〉 = 5−5
10 + 27−3

10 + 38−2
10 +?

Qchem on NISQ Devices – MD - UofT Measurement 22/29



How to reduce the number of measurements

Naively m = O
(
N8

ε2

)
• different representation
• finding commuting groups, or more advanced
• apply a cut-off on Hamiltonian matrix elements
• constraints on RDMS that link measurements

Qchem on NISQ Devices – MD - UofT Measurement 23/29



Optimization: available methods

Goal:
• ~θ(k+1) = f

(
~θ(k)
)

• or stop

Slow optimization is costly: every optmization cycle adds
measurements
• gradient-free: only based on function evaluations

e.g. simplex methods, COBYLA, Powell, particle-swarm
optimization
• gradient-based: also use derivatives

e.g. L-BFGS-B, SPSA
• numerical gradient
• analytical gradient

Qchem on NISQ Devices – MD - UofT Optimization 24/29



Optmization: which one to choose?

Performance and
hyper-parameters highly depend
on the situation
• noise
• size of the system
• local minima
• required accuracy
• number of measurements

Qchem on NISQ Devices – MD - UofT Optimization 25/29



What to do with it?

Now you have an approximation of the ground state, you can
• construct potential energy surfaces
• calculate properties

〈O1〉 =
∑
pq

Opq

〈
a†paq

〉
〈O2〉 =

∑
pqrs

Opqrs

〈
a†pa
†
qasar

〉
• Improve the accuracy of advanced quantum chemical methods

Qchem on NISQ Devices – MD - UofT Optimization 26/29



Current State of the Art

Frank Boys

arXiv:1208.5524

VQE experimental applications

Architecture/
Platform

System-
of-interest

Number of
physical qubits

Year

Photonic chip HeH+ 2 2014

Single trapped ion HeH+ 2017

Superconducting processor
(transmon qubits)

H2 2 2016

Superconducting processor
(transmon qubits)

H2 2 2017

LiH 4 2017

BeH2 6 2017

Ion trap processor
(Ca+ ions)

H2 2 2018

LiH 3 2018

Superconducting processor
(transmon qubits)

H2 2 2018

Silicon photonic chip

Two chlorophyll
units in 18-mer
ring of
LHII complex

2 2018

Superconducting processor
(transmon qubits)
via Cloud

Deuteron 2-3 2018

Ion trap processor
(171Yb+ ions)

H2O 2-3 2019

10.1021/acs.chemrev.8b00803
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From experiment to routine

https://www.bbc.com/news/technology-12181153 https://www.research.ibm.com/ibm-q/

https://en.wikipedia.org/wiki/Summit_

(supercomputer) https://commons.wikimedia.org/wiki/Question_mark
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The end

Thank you for your attention!

Questions are welcome

Slides: https://mfdgroot.github.io/
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