Quantum Computing

A gentle parachute from the 30 000ft overview

Aspuru-Guzik Group

A bit of history

Popular science is rarely the full story

https://www.smbc-comics.com/comic/the-talk-3

Ask your friendly neighborhood theorist

https://www.smbc-comics.com/comic/the-talk-3

Funny coincidence

1 What is a quantum computer?

2 What are quantum algorithms?

3 Why do they matter for chemistry?

Quantum computer

com·put·er /kəm'pyoodər/ •

noun

an electronic device for storing and processing data, typically in binary form, according to instructions given to it in a variable program.

· a person who makes calculations, especially with a calculating machine.

Quantum computer

https://en.wikipedia.org/wiki/Quantum_annealing

D'Wave

- $H = (1 s)H_0 + sH_1(x_i)$
- start in easy $|\Psi_0\rangle$
- naturally go to hard $|\Psi_1
 angle$
- set parameters in H_1 once
- specific for optimization
- controversy about speedup

https://phys.org/news/2018-06-bosonsampling-photons-output-spite.html

http://www.2physics.com/2013/03/ experimental-boson-sampling.html

Boson sampling

- quantum computer as sampler
- Proposed in 2011 by Aaronson
- Set parameters of circuit unitary *U* through optical elements
- sample from perm (U)
- provably hard (#P-hard)
- similar to Galton board

https://physicsworld.com/a/ion-basedcommercial-quantum-computer-is-a-first/

https://newsroom.intel.com/news/intel-advancesquantum-neuromorphic-computing-research/

https://ai.googleblog.com/2018/03/a-preview-ofbristlecone-googles-new.html

https://www.tuwien.ac.at/en/news/news_detail/ article/8946/

Quantum computer

Digital (quantum) computing

Classical bits

- Express numbers base 2 47 = 101111
- first non-trivial base
- with enough bits, represent any number
- easy to realize ⇒ transistor

Quantum bit

- Expand wave function in basis vectors of 2-level systems $|\Psi\rangle = a |000\rangle + b |001\rangle + c |010\rangle + \dots$
- with enough qubits, represent any quantum system
- easiest to realize
 - \Rightarrow quantum control

Digital (quantum) computing

Classical bits

- Express numbers base 2 47 = 101111
- first non-trivial base
- with enough bits, represent any number
- easy to realize ⇒ transistor

Quantum bit

- Expand wave function in basis vectors of 2-level systems $|\Psi\rangle = a |000\rangle + b |001\rangle + c |010\rangle + \dots$
- with enough qubits, represent any quantum system
- easiest to realize
 - \Rightarrow quantum control

DiVincenzo requirements

- 1 scalable wel characterizable
- 2 the ability to initialize the state of the qubits
- 3 long relevant decoherence times
- 4 a universal set of quantum gates
- 5 a qubit-specific measurement capability

Quantum specific

- entanglement $|\Psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$
- superposition $|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle |1\rangle)$

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits, and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

http://science.sciencemag.org/content/354/6316/1090.summary

Reversible computation

- all computations are unitary
- $U^{-1} = U^{\dagger}$
- problems with function evaluation

$$\left\{ \begin{array}{l} U \left| x \right\rangle = \left| z \right\rangle \\ U \left| y \right\rangle = \left| z \right\rangle \end{array} \right.$$

$$\Rightarrow U(|x\rangle - |y\rangle) = 0$$

$$\begin{array}{c|c} |x\rangle & \hline & |x\rangle \\ |0\rangle & \hline & F & |F(x)\rangle \end{array}$$

Quantum parallelism

- flip bits
- 00,01,10,11
- $\frac{1}{2}\left(\left|00
 ight
 angle+\left|01
 ight
 angle+\left|10
 ight
 angle+\left|11
 ight
 angle
 ight)$

Measurement

- from quantum to classical
- projective \Rightarrow collapse
- probability distribution

Classical bits

Logic Gate Symbols

OR

AND

NAND

NOR

XNOR

Buffer

NOT

Quantum bit

https://ieeexplore.ieee.org/document/1263787? arnumber=1263787

How many gates do you need?

Classical bits

 NAND and XOR are universal

Quantum bit

https://arxiv.org/abs/quant-ph/0602174

- single qubit rotation and CNOT $(\sqrt{\mathrm{SWAP}})$ are universal
- different sets possible
- strongly depends on architecture

Using building blocks

https://en.wikipedia.org/wiki/ Quantum_Fourier_transform

 U_{ω}

H

Speedups

- polynomial
- exponential
- heuristics
- oracles

Repeat $O(\sqrt{N})$ times https://en.wikipedia.org/wiki/

 $2 |0^n\rangle \langle 0^n | - I_n$

 $H^{\otimes r}$

Grover%27s_algorithm

 $|0\rangle$

 $|1\rangle$

NISQ = Noisy Intermediate Scale Quantum

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

www.rigetti.com

Challenges

- connectivity
- decoherence
- qubit errors
- gate errors
- readout errors

https://www.nature.com/articles/s41534-016-0004-0

- redundancy but no-cloning theorem
- add ancilla qubits
- measure syndrome and adjust upon error
- huge overhead ± 1000 physical qubits per logical

Hamiltonian Simulation $|\Psi(t) angle=\exp\left(-iHt ight)|\Psi(0) angle$

Combination of algorithms

- State preparation
- Unitary evolution
- Phase estimation
- Amplitude amplification

Resource estimates Fe_7MoS_9C

Structure	T gates	Cl. gates	∆t (10 ns)	∆t (100 ns)	Qubits	
Quantitatively accurate simulation (0.1 mHa)						
Structure 1						
Serial	1.1×10^{15}	1.7×10^{15}	130 d	3.6 y	111	
Nesting	3.5×10^{15}	5.7×10^{15}	15 d	4.9 mo	135	
PAR	3.1×10^{16}	3.1×10^{16}	110 h	1.5 mo	1,982	
Structure 2						
Serial	2.0×10^{15}	3.1×10^{15}	240 d	6.6 y	117	
Nesting	6.5×10^{15}	1.0×10^{16}	27 d	8.9 mo	142	
PAR	6.0×10^{16}	$6.0 imes 10^{16}$	210 h	2.9 mo	2,024	
Qualitatively accurate simulation (1 mHa)						
Structure 1						
Serial	1.0×10^{14}	1.6×10^{14}	12 d	3.9 mo	111	
Nesting	3.3×10^{14}	5.6×10^{14}	1.4 d	14 d	135	
PAR	$3.0 imes 10^{15}$	3.0×10^{15}	11 h	4.6 d	1,982	
Structure 2						
Serial	1.9×10^{14}	$3.0 imes 10^{14}$	22 d	7.2 mo	117	
Nesting	6.0×10^{14}	9.9×10^{14}	2.5 d	25 d	142	
PAR	5.5×10^{15}	5.5×10^{15}	20 h	8.3 d	2,024	

https://www.pnas.org/content/114/29/ 7555.abstract

 \Rightarrow Out of reach

Hybrid quantum classical algorithms

https://arxiv.org/abs/1812.09976

Year	Calculation	Citation	Number of qubits
1933	H_2	[74]	1
1950	Be	[76]	3,4
1952	He	[77]	2
1955	He	[78]	2, 3
1956	BH	[41]	5
1956	H_2O	[41]	7
1957	LiH	[79]	3, 4, 5
1957	BeH^+	[79]	3, 4, 5
1960	Be	[82]	6
1960	CH_2	[83]	19
1963	H_2	[84]	3, 4, 5, 6
1966	HeH	[85]	3
1966	Li_2	[85]	3
1967	H_2O	[86]	10
1967	H_2O	[87]	24
1967	H_2O	[88, 89]	38, 39
1968	H_2O	[90]	39,46
1968	Be	[91]	11
1969	Li,Be^+,B^{++}	[92]	9,10
1969	BH, FH	[93]	12, 14
1970	H_2O	[94]	23

https:/	/arxiv.org/	'abs/	1208.5524
---------	-------------	-------	-----------

Architecture/ Platform	System- of-interest	Number of physical qubits	Year
Photonic chip	HeH ⁺	2	2014
Single trapped ion	HeH ⁺		2017
Superconducting processor (transmon qubits)	H ₂	2	2016
Superconducting processor (transmon qubits)	H ₂	2	2017
	LiH	4	2017
	BeH ₂	6	2017
lon trap processor (Ca ⁺ ions)	H ₂	2	2018
	LiH	3	2018
Superconducting processor (transmon qubits)	H ₂	2	2018
Silicon photonic chip	Two chlorophyll units in 18-mer ring of LHII complex	2	2018
Superconducting processor (transmon qubits) via Cloud	Deuteron	2-3	2018
lon trap processor $(^{171}Yb^+ \text{ ions})$	H ₂ O	2-3	2019

https://arxiv.org/abs/1812.09976

https://www.bbc.com/news/technology-12181153

https://en.wikipedia.org/wiki/Summit_ (supercomputer)

https://www.research.ibm.com/ibm-q/

https://www.dwavesys.com

Many things need to work together

https://cacm.acm.org/magazines/2013/10/168172-a-blueprint-for-building-a-quantumcomputer/fulltext

Why do they matter for chemistry?

Thank you for your attention!

Further reading and self-promotion: Quantum Chemistry in the Age of Quantum Computing https://arxiv.org/abs/1812.09976

slides @ https://mfdgroot.github.io/

Quantum Computing for Chemistry

Outro