Inside the Latent Space of a Qauntum Autoencoder

Matthias Degroote Work with Douglas Mendoza, Hannah Sim, Juan Felipe Carrasquilla, Alán Aspuru-Guzik

Quantum Techniques in Machine Learning 2019 22/10/2019

Parametrized circuits for quantum chemistry

10.1038/ncomms5213

VQE on real devices

Transmon pulse diagram

$H_2 PES$

Scale up = end of story?

- What can you do once you have a ground state wave function?
- How large does the system have to be to be useful?
- How to find systems that are interesting?

Scale up = end of story?

- What can you do once you have a ground state wave function?
- How large does the system have to be to be useful?
- How to find systems that are interesting?

Scale up = end of story?

- What can you do once you have a ground state wave function?
- How large does the system have to be to be useful?
- How to find systems that are interesting?

Challenge 1. The Designer Challenge. While the mission of the 20th century was related to providing answers to questions pertaining to properties of specific chemical structures, the questions of the 21st century revolve around the **inverse** design problem:^{88–94} finding the best chemical structures that are associated with desired and requested properties. A potential solution for this challenge is the use of invertible models from machine learning such as generative models (GANs, autoencoders, ...)^{48,89} or inverting molecules from families of Hamiltonians.^{90–93}

10.1021/acscentsci.7b00550

Inverse design

10.1126/science.aat2663

Classical Machine Learning for Chemistry

10.1021/acscentsci.7b00572 10.1126/science.aat2663

Can we reformulate this machine learning toolbox for near-term quantum devices?

- recreate functions of classical neural nets in quantum circuits
- preferrably learn on quantum data

At the level of the neuron

Yudong Cao arXiv:11711.11240

- replicate classical distribution
- repeat until success

Input state

Lasse Bjørn Kristensen

Spiking quantum neuron

- fully quantum
- temporal character
- not gate based

Quantum Generative Adversial Network

Jhonathan Romero

arXiv:1901.00848

- replicate classical distribution
- adversial training

Abhinav Anand Poster 49 about Noise Resilience

Quantum Variational Autoencoder

Jhonathan Romero

10.1088/2058-9565/aa8072

Cost function

Training modes:

input - output training

$$C_{1} = \sum p_{i} F\left(|\psi_{i}\rangle_{AB}, \rho_{i,\bar{p}}^{out} \right)$$

trash training

$$C_{2} = \sum p_{i} F \left(\operatorname{Tr}_{A} \left[\left| \psi_{i}^{\prime} \right\rangle \left\langle \psi_{i}^{\prime} \right|_{AB} \right], \left| a \right\rangle_{B} \right)$$

• requires less copies of original state

QTML - M. Degroote

Quantum Variational Autoencoder

Parametrized unitaries

- sometimes compressibility is known based on symmetries
- we would like the autoencoder to figure out
- general unitary intractable
- resort to templates
 - Scheme A: 15n(n−1)/2
 - Scheme B: 3n(n-1) + 6n

Test system: H₂

 compressible to 1 qubit

Results: Fidelities

Circuit	Final size (# qubits)	Set	$-\log_{10}(1-\mathcal{F}) \operatorname{MAE}^{a}$	-log ₁₀ Energy MAE ^a (Hartrees)
Model	2	Training	6.96(6.82-7.17)	6.64(6.27–7.06)
A	2	Testing	6.99(6.81-7.21)	6.76(6.18-7.10)
	1	Training	6.92(6.80-7.07)	6.60(6.23-7.05)
	1	Testing	6.96(6.77-7.08)	6.72(6.15–7.05)
Model	2	Training	6.11(5.94–6.21)	6.00(5.78–6.21)
В	2	Testing	6.07(5.91-6.21)	6.03(5.70-6.21)
	1	Training	3.95(3.53-5.24)	3.74(3.38-4.57)
	1	Testing	3.81(3.50-5.38)	3.62(3.35-4.65)

^a MAE: Mean absolute error. Log chemical accuracy in Hartrees $\approx -$ 2.80.

Results: Density Matrices

QTML - M. Degroote

Quantum Variational Autoencoder

Goal: Explore Latent Space

10.1021/acscentsci.7b00572

Look at phase transitions in wave functions

QTML - M. Degroote

Quantum Phase Transitions

How does Compression affect Phase Information?

Douglas Mendoza

Phase transition in XXZ model

- exact wave functions
- some symmetry present
- look at fidelity susceptibility

10.1038/nmat1358

Influence of expressibility

Hannah Sim

arXiv:1905.10876

- choose circuits with different expressibilities
- study influence on conservation of information

Conclusions

Done:

- Quantum Neurons
- Quantum Variational Autoencoder compression

Underway:

- From simulation to experimental demonstration
- Information in latent space

To Do:

- Expand machine learning functions
- Apply concepts to new problems

The end

Thank you for your attention!

Questions are welcome

Slides: https://mfdgroot.github.io/

