An Artificial Spiking Quantum Neuron

Matthias Degroote

Work with Lasse Bjørn Kristensen, Peter Wittek, Nikolaj Zinner, Alán Aspuru-Guzik

Aspuru-Guzik Group Meeting 08/08/2019

The big promise

Universal quantum computers can do anything classical computers can do and more...

Speedups

Algorithms with proven speedup

- Shor's factoring
- Grover search
- Boson Sampling

The disappointment

You need

- very large
- perfectly performing
- well-programmed quantum computers.

In the meantime

Do what they are good at

- discrete optimization
- quantum chemistry
- machine learning

QC

- Quantum phase transition identification by adversarial autoencoders
- Machine learning for tensor networks
- Learning of density functionals
- Recurrent neural networks learning parameters for quantum circuits
- Materials design in the group

- Quantum enabled sampling e.g. Xanadu's Gaussian Boson Sampling
- Quantum Support Vector Machines
- Quantum Boltzman Machines
 - e.g. D-Wave's samplers

- Quantum Generative Adversial Networks
- Quantum Variatonal Autoencoder
- Quantum Classifiers
- Quantum Neurons

Power Consumption

Game	Computer	Human		
Chess	900W	20W		
Go	1000W	20W		
StarCraft II	2000W	20W		

How is this possible?

- sparse connectivity
- info transfer through spikes
- thresholding
- temporal character
 (firing rate, relative timing)

Requirements

Integrate and fire

- synaptic plasticity
- only feed-forward

	System overview		On-chip learning	Inference of deep SNNs					
Name	Type of hardware	Neuron and synapse count	Plasticity rules	Network type	Network size	Dataset	Test accuracy	Throughput (in img/s)	Energy consumption (per image)
TrueNorth (Merolla et al., 2014)	digital	single chip: 4096 cores, 1M neurons, 256M synapses; up to 8 chips	None	Deep CNNs: (a, b) Esser et al. (2015) (c) Esser et al. (2016)	(a) 1920 cores (b) 5 cores (c) 8 chips	(a, b) MNIST (c) CIFAR10 and many more	(a) 99.4% (b) 92.7% (c) 89.3%	(a, b) 1000 (c) 1249	(a) 108 μJ (b) 0.268 μJ (c) 164 μJ
SpiNNaker (Furber et al., 2013)	digital	single chip: 18 ARM cores, approx. 1k neurons and 1k synapses per core for real-time simulations; up to 576 chips	flexible, e.g., unsupervised (Jin et al., 2010) and supervised (Mikaitis et al., 2018) STDP	DBN: 2 hidden layers with 500 neurons each (Stromatias et al., 2015)	1 chip	MNIST	95%	91	3.3 mJ
BrainScaleS (Schemmel et al., 2010; Brüderle et al., 2011)	mixed- signal	wafer with 384 cores, 200k neurons, 45M synapses	STDP (Schemmel et al., 2006; Pfeil et al., 2013b)	MLP: 2 hidden layers with 15 neurons each (Schmitt et al., 2017)	14 cores	downscaled MNIST	95%	10000	7.3 mJ

Splie communication in all of these systems is asynchronous. The SplitHaker system is the only system listed in this table that allows events with payload (see section 1). Note that none of these systems natively support batching on inputs as commonly used in commentand deep learning.

Functions

- measure excitations
- measure relative phases

Requirements

- have distinct temporal character
- no specific hardware paradigm
- low qubit overhead
- leave input unchanged

4 maximimally entangled 2 qubit states

$$egin{array}{lll} \left| \Phi^+
ight
angle &= rac{1}{\sqrt{2}} \left(\left| 00
ight
angle + \left| 11
ight
angle
ight) \ \left| \Phi^-
ight
angle &= rac{1}{\sqrt{2}} \left(\left| 00
ight
angle - \left| 11
ight
angle
ight) \ \left| \Psi^+
ight
angle &= rac{1}{\sqrt{2}} \left(\left| 01
ight
angle + \left| 10
ight
angle
ight) \ \left| \Psi^-
ight
angle &= rac{1}{\sqrt{2}} \left(\left| 01
ight
angle - \left| 10
ight
angle
ight) \end{array}$$

Why are they special?

- correlations beyond classical
- used in quantum communication
 - e.g. teleportation, superdense coding
- quantum cryptography

Differences

- Reduction of #qubit
- No longer strictly feed forward
- Complication for last layer

Measurement back-action:

$$\begin{split} \operatorname{Comparator} & \frac{1}{\sqrt{2}} \left(\left| \Psi_{1}^{+} \right\rangle + \left| \Phi_{1}^{-} \right\rangle \right) \left| \Psi_{2}^{+} \right\rangle \left| \downarrow \right\rangle \\ = & \frac{1}{\sqrt{2}} \left(\left| \Psi_{1}^{+} \right\rangle \left| \Psi_{2}^{+} \right\rangle \left| \uparrow \right\rangle + \left| \Phi_{1}^{-} \right\rangle \left| \Psi_{2}^{+} \right\rangle \left| \downarrow \right\rangle \right) \end{split}$$

Defines an expected likelihood kernel:

$$\begin{split} P_{\mid\uparrow\rangle} &= \sum_{0}^{3} \left|a_{i}\right|^{2} \left|b_{i}\right|^{2} \\ k\left(p,p'\right) &= \int p(x)p'(x) \mathrm{d}x \end{split}$$

Can be used for quantum kernel learning methods

Thank you for your attention!

Questions are welcome

Further reading and self-promotion:

An Artificial Spiking Quantum Neuron

https://arxiv.org/abs/1907.06269

Slides:

https://mfdgroot.github.io/
Slack #group_meeting

